Патент на катализатор

Патент на катализатор

  1. Главная
  2. Реестр патентов

Последние новости

(21), (22) Заявка: 2002123900/042002123900/04, 10.09.2002

(24) Дата начала отсчета срока действия патента:
10.09.2002

(45) Опубликовано: 27.05.2004

(56) Список документов, цитированных в отчете о
поиске: RU 2042426 C1, 27.08.1995.
US 5151393 A1, 29.09.1992.

Адрес для переписки:
109263, Москва, ул. Малышева, 26, корп.2, кв.95, Н.Н. Ростанину

(72) Автор(ы):
Фалькевич Г.С. (RU),
Ростанин Н.Н. (RU),
Барильчук Михаил Васильевич (LT),
Ростанина Е.Д. (RU),
Иняева Г.В. (RU)

(73) Патентообладатель(и):
Фалькевич Генрих Семёнович (RU),
Ростанин Николай Николаевич (RU)

(54) СПОСОБ РЕГЕНЕРАЦИИ ЦИНКСОДЕРЖАЩИХ ЦЕОЛИТНЫХ КАТАЛИЗАТОРОВ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ С КОНЦОМ КИПЕНИЯ НЕ ВЫШЕ 200С

Изобретение относится к нефтехимии. Описан способ регенерации содержащих серу цеолитных цинксодержащих катализаторов превращения углеводородных фракций с концом кипения не выше 200°С, включающий удаление серы из катализатора при его контакте с газом, содержащим не менее 40 об.% водорода и хотя бы один из компонентов из группы азот, метан, этан, в условиях образования сероводорода и последующее выжигание кокса при контакте с кислородсодержащим газом. Катализатор может содержать также один и более металлов из группы Fe, Ca, Mg, редкоземельные элементы. Технический результат: способ позволяет уменьшить или предотвратить накопление серы на катализаторе, приводящее к изменению его свойств. 2 з.п.ф-лы, 1 табл.

Изобретение относится к способам регенерации катализаторов путем обработки водородсодержащим газом с последующей обработкой кислородсодержащим газом и может быть использовано в нефтепереработке.

В процессах каталитических превращений углеводородов в условиях повышенных температур и давлений происходит снижение активности катализатора, в основном обусловленное образованием кокса на его поверхности. Содержащиеся в сырье соединения серы взаимодействуют с металлическими компонентами катализатора и могут также изменять его каталитические свойства.

Удаление коксовых отложений осуществляют их окислением в содержащей свободный кислород среде с образованием оксидов углерода и воды. При этом сера окисляется, образуя диоксид и триоксид, и последний взаимодействует с оксидами металлов с образованием термически устойчивых сульфатов. Таким образом может происходить необратимая дезактивация металлсодержащего катализатора.

Известны различные способы регенерации катализаторов, разрешающие проблему накопления сульфатов.

Разрушение образующихся при регенерации катализатора сульфатов в описанном в патенте США №4033898, В 01 J 21/20 способе регенерации катализаторов риформинга осуществляют, обрабатывая катализатор после окислительной регенерации в среде водорода. При этом может происходить восстановление образующегося при разложении сульфата оксида металла, что не всегда желательно.

В патенте США №5270272, В 01 J 29/38 (прототип) описан способ удаления серы из катализатора риформинга до проведения его окислительной регенерации: способ регенерации и удаления серы из содержащего серу серочувствительного катализатора риформинга, включающего платину, некислотный L-цеолит и щелочной металл, заключается в удалении не менее 50% серы из катализатора в виде Н2S, (NH4)2S, (NН4)SО3 и/или (NH4)2SO4 при контакте с газообразной смесью, содержащей NH3 и/или N2, из которого образуется NH3, при концентрации 1-100 мол.%, а также один или более компонентов из группы N2, Н2, Н2О, при температуре 250-800 C с последующим выжиганием кокса в кислородсодержащем газе, редиспергированием и восстановлением платины. Очевидно, при таком способе регенерации образуются сточные воды.

В патенте США №5151393, В 01 J 38/10 описано использование водорода для реактивации среднепористого металлосиликатного катализатора, содержащего коксовые отложения: вместо окислительной регенерации, протекающей с образованием воды, которая разрушает структуру цеолита, катализатор обрабатывают водородом для получения более летучих, чем накопленный на катализаторе кокс, соединений и затем осуществляют их десорбцию. На первой стадии регенерации осуществляют контакт частиц катализатора с водородом при давлении 3,5-21 МПа и температуре 260-815 C с частичной реактивацией катализатора при гидрокрекинге тяжелых соединений кокса, и затем на второй стадии осуществляют контакт частично реактивированного катализатора с легким газом — водородом, азотом или топливным газом — при температуре выше 360 С и давлении не менее чем на 3,01 МПа ниже, чем на первой стадии. Запатентованный способ регенерации применяют к катализатору, содержащему цеолит группы пентасилов и закоксованному в реакциях превращения кислородсодержащих соединений в бензин или в реакции олигомеризации олефинов, а также в процессах крекинга и селективного гидрокрекинга.

Содержащие цинк и цеолит группы пентасилов катализаторы используют для получения высокооктановых компонентов бензина из алифатических углеводородов: в процессах олигомеризаци легких олефинов, дегидроциклизации парафинов и олефинов углеводородных газов и низкооктановых бензинов (патент США №3760024, 1973 г., С 07 С 5/27, патенты РФ №2133640, В 01 J 29/46, №2169043, В 01 J 29/46, №2172212, В 01 J 29/46). Известные цинксодержащие катализаторы могут включать и другие металлы, содержание которых в катализаторе практически значительно ниже, чем цинка: железо, кальций, магний, редкоземельные элементы. Перерабатываемое с использованием этих катализаторов сырье содержит соединения серы — сероводород, а также меркаптаны и сульфиды, из которых в условиях каталитического превращения выделяется сероводород, взаимодействующий с содержащимися в катализаторе цинком и другими металлами с образованием сульфидов. При окислительной регенерации катализатора в среде кислорода происходит образование термически стабильных сульфата цинка и других сульфатов. Содержащий после окислительной регенерации сульфатную серу катализатор полностью не восстанавливает свои свойства.

Для регенерации серусодержащего катализатора конверсии газов и бензинов не может быть применен способ регенерации катализатора по патенту США №4033898, так как при водородной обработке регенерированного в среде кислорода катализатора происходит восстановление цинка, тогда как активный катализатор включает его в окисленной форме. Регенерацию катализатора по патенту США №5151393 следует осуществлять при давлении, вдвое и более превышающем процесс конверсии сырья, что является недостатком такого способа регенерации.

Предлагаемый способ регенерации содержащего серу цеолитного цинксодержащего катализатора превращения углеводородных фракций с концом кипения не выше 200 С включает удаление серы из катализатора и последующее выжигание кокса при контакте с кислородсодержащим газом и отличается тем, что удаление серы из катализатора осуществляют при 350-500 C и давлении до 5 МПа контактом катализатора с газом, содержащим не менее 40 об.% водорода.

Удаление серы из катализатора осуществляют водородсодержащим газом. Используемый газ может содержать также один и более компонентов из группы азот, метан, этан и в качестве примеси, менее 10%, углеводороды С3+. В процессах, осуществляемых с циркуляцией водородсодержащего газа, этот газ может быть использован для регенерации катализатора. Чем выше содержание водорода в газе, тем менее продолжительной может быть обработка катализатора с целью его обессеривания. Предпочтительно содержание более 50 об.% водорода в газе для регенерации катализатора. Обработку катализатора осуществляют при температуре 350-500 С, как правило, достаточна температура 400-450 С, при давлении до 5 МПа, предпочтительно при 1-2 МПа.

Удаление серы из катализатора должно быть по возможности более полным, лучше более 70%. Если содержание серы в сырье незначительно, последствия накопления серы на катализаторе проявляются через несколько циклов реакция-регенерация. Если провести регенерацию по предлагаемому способу после значительного ухудшения результатов только окислительной регенерации, удаление серы из катализатора окажется затруднительным, его отравление — необратимым. Необходимо регулярное проведение восстановительно-окислительной регенерации катализатора, предупреждающее накопление серы и циркуляцию оксидов серы.

Примеры подтверждают эффективность предложенного способа регенерации цинксодержащего катализатора конверсии углеводородных фракций с концом кипения не выше 200 С.

Катализатор 1 получают экструзией смеси исходных компонентов — цеолита ЦВМ (SiO2/Аl2O3=39 моль/моль, содержание Na2O менее 0,1%), гидроксида алюминия и нитрата цинка. После прокаливания катализатор имеет следующий состав (здесь и далее рассчетный, в мас.%): 65 цеолит, 2,3 оксид цинка, 32,7 гидроксид алюминия. Катализатор включает в качестве примеси в реагентах 0,065% серы, в том числе 0,004% в составе сульфатов. Катализатор используют в процессе олигомеризации газов каталитического крекинга (состав в мас.%: пропан — 6,67, пропилен — 13,62, бутан — 44,82, бутилен — 29,89) с получением высокооктанового компонента бензина при давлении 2,3 МПа и объемной скорости подачи сырья (ОСПС) 3,5 час -1 .

Закоксованный катализатор 1 (содержание кокса 2,3-2,9%) регенерируют при давлении 1,9 МПа азотовоздушной смесью, подаваемой со скоростью 700 м 3 /м 3 час, постепенно изменяя концентрацию кислорода в ней: при концентрации кислорода около 1 об.% температура регенерации составляет 300-370 С, при повышении концентрации кислорода до 3,5 об.% температура поднимается до 460-470 С, при повышении концентрации кислорода до 6 об.% максимальная температура в слое катализатора составляет 510 С, затем концентрацию кислорода повышают до 18 об.% и выдерживают катализатор при температуре 505-510 С в течение 6 часов. После 12 циклов реакция-регенерация катализатор не содержит кокса, включает 0,98% серы, в том числе 0,81% серы в составе сульфатов.

Закоксованный катализатор 1 после 12 циклов реакции регенерируют по предлагаемому способу, предваряя окислительную регенерацию катализатора по примеру 1 обработкой водородсодержащим газом (состав, об.%: Н2 — 55,3; СН4 — 31,0; С2Н6 — 9,6; С3+ — 4,1) в течение 4 часов при температуре 400-430 С, давлении 1,9 МПа, объемной скорости подачи газа 400 час -1 . Регенерированный катализатор содержит 0,22% серы в составе сульфатов.

Катализатор 2 готовят по патенту РФ №2172212 на основе цеолита ЦВН (SiO2/Аl2O3=71,4, содержание Na2O менее 0,01%). Катализатор содержит (в мас.%) цеолит — 62,0, оксид алюминия — 34,8, оксид цинка — 2,0, оксиды РЗЭ — 0,9, оксид железа — 0,2, оксид магния — 0,1, сера — менее 0,1. Катализатор используют в процессе превращения прямогонного бензина, выкипающего в интервале температур 36-200 С, в высокооктановый бензин с увеличеным содержанием ароматических углеводородов (Аr) при давлении 1,9 МПа и ОСПС 4 час -1 . Закоксованный катализатор (содержание кокса 1,8-2,2%) регенерируют азотовоздушной смесью по примеру 1. После 9 циклов реакция-регенерация катализатор не содержит кокса, включает 1,38% серы, в том числе 1,27% серы в составе сульфатов.

Закоксованный катализатор 2 после 9 циклов реакции регенерируют по предлагаемому способу, предваряя окислительную регенерацию катализатора по примеру 1 обработкой водородсодержащим газом (состав, об.%: Н2 — 40; N2 — 60) в течение 3 часов при температуре 500 С, давлении 1,9 МПа, объемной скорости подачи газа 500 час -1 . Регенерированный катализатор содержит 0,13% серы в составе сульфатов.

Катализатор 3 готовят по патенту РФ №2133640 на основе цеолита ЦВН (SiO2/Al2O3=71,4, содержание Na2O менее 0,01%). Катализатор содержит (в мас.%) цеолит — 65,0, оксид алюминия — 33,1, оксид цинка — 1,5, оксид кальция — 0,2, оксид железа — 0,2, сера — менее 0,1. Катализатор используют в процессе превращения пропан-бутановой фракции (состав, мас.%: пропан — 37, бутан — 61, другие углеводороды — 2) в концентрат ароматических углеводородов (Аr) при давлении 2,5 МПа и ОСПС 3 час -1 . Закоксованный катализатор (содержание кокса 1,8-2,0%) регенерируют азотовоздушной смесью по примеру 1. После 7 циклов реакция-регенерация катализатор не содержит кокса, включает 0,71% серы в составе сульфатов.

Закоксованный катализатор 3 после 5 циклов реакции регенерируют по предлагаемому способу, предваряя окислительную регенерацию катализатора по примеру 1 обработкой водородсодержащим газом (состав, об.%: H2 — 89,3; СН4 и С2Н6 — 10,7) в течение 6 часов при температуре 350-400 С, давлении 2,5 МПа, объемной скорости подачи газа 400 час -1 . Регенерированный катализатор содержит 0,1% серы в составе сульфатов.

Катализаторы 1, 2 и 3 испытывают в реакциях превращения углеводородных фракций. Результаты приведены в таблице.

Выход целевых продуктов при использовании катализаторов, регенерированных с обработкой водородсодержащим газом для удаления серы, выше, чем при использовании катализаторов, регенерированных только окислением кокса азотовоздушной смесью.

1. Способ регенерации содержащего серу цеолитного цинксодержащего катализатора превращения углеводородных фракций с концом кипения не выше 200 С, включающий удаление серы из катализатора и последующее выжигание кокса при контакте с кислородсодержащим газом, отличающийся тем, что удаление серы из катализатора осуществляют при 350-500 С и давлении до 5 МПа контактом катализатора с газом, содержащим не менее 40 об.% водорода.

2. Способ по п.1, отличающийся тем, что катализатор содержит хотя бы один из металлов из ряда Fе, Са, Mg, редкоземельные элементы.

3. Способ по п.1 или 2, отличающийся тем, что газ, содержащий водород, включает также один и более компонентов из группы азот, метан и этан.

QB4A Регистрация лицензионного договора на использование изобретения

Лицензиар(ы): Фалькевич Генрих Семёнович, Ростанин Николай Николаевич

Лицензиат(ы): ООО «САПР-НЕФТЕХИМ»

Договор № РД0004135 зарегистрирован 17.11.2005

* ИЛ — исключительная лицензия НИЛ — неисключительная лицензия

QB4A Регистрация лицензионного договора на использование изобретения

Лицензиар(ы): Фалькевич Генрих Семёнович, Ростанин Николай Николаевич

Лицензиат(ы): Компания «Экотехник Кемикл АГ» (CH)

Договор № РД0043797 зарегистрирован 24.11.2008

* ИЛ — исключительная лицензия НИЛ — неисключительная лицензия

QZ4A — Регистрация изменений (дополнений) лицензионного договора на использование изобретения

Лицензиар(ы): Фалькевич Генрих Семёнович, Ростанин Николай Николаевич

Лицензиат(ы): Общество с ограниченной ответственностью «САПР-НЕФТЕХИМ»

Характер внесенных изменений (дополнений):
Исключен из договора патент №2124553. Изменена территория действия договора для патентов: №№2139844, 2165293, 2229337-территория Российской Федерации кроме ООО «Пермнефтегазпереработка», г.Пермь.

Смотрите так же:  Федеральный закон от 8 декабря 2003

Дата и номер государственной регистрации договора, в который внесены изменения:
17.11.2005 № РД0004135

* ИЛ — исключительная лицензия НИЛ — неисключительная лицензия

Патент недели: эффективный катализатор

При непосредственном участии Федеральной службы по интеллектуальной собственности («Роспатента») мы решили ввести на сайте рубрику «Патент недели». Еженедельно в России патентуются десятки интересных изобретений и усовершенствований — почему бы не рассказывать о них в числе первых.

Патент: 2662239

Авторы: Павел Дик, Василий Перейма, Галина Корякина, Ксения Надеина, Максим Казаков, Олег Климов, Александр Носков

Сегодня в российской нефтеперерабатывающей промышленности наблюдаются следующие тенденции: увеличение глубины переработки нефти, ужесточение требований к моторным топливам, вовлечение в переработку все более тяжелой нефти. Гидрокрекинг углеводородного сырья позволяет увеличить глубину нефтепереработки, вовлекать в переработку более тяжелые нефти и получать высококачественные моторные топлива — с низким содержанием серы и ароматических соединений.

В зависимости от условий проведения процесса гидрокрекинга и применяемых катализаторов можно добиваться изменения фракционного состава получаемой смеси углеводородов в широких пределах. Это позволяет существенно регулировать выход получаемых продуктов: углеводородного газа, бензиновой, керосиновой, дизельной фракций, остатка гидрокрекинга. Наиболее ценными продуктами гидрокрекинга являются керосиновая и дизельная фракции. Существующие на данный момент марки российских катализаторов обладают низкой селективностью по отношению к керосиновой и дизельной фракциям. С их помощью нельзя достичь и не позволяют достигать высоких выходов керосиновой и дизельной фракций даже при ужесточении условий проведения процесса гидрокрекинга, например, за счет подъема температуры в реакторе.

Кроме того, известные катализаторы обладают низкой активностью в гидрокрекинге и гидрообессеривании (химический процесс, применяемый для удаления серы из природного газа и продуктов нефтепереработки). В связи с этим необходимо увеличивать стартовую температуру процесса и, как следствие, сокращать цикл пробега катализатора до прекращения его действия.

Совершенно новый высокоактивный катализатор, разработанный российскими химиками, содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений, особую форму лимонной кислоты, кремний в форме аморфного алюмосиликата, алюминий в форме оксида и аморфного алюмосиликата в определенных пропорциях.

Сначала готовят носитель, содержащий аморфный алюмосиликат и оксид алюминия. К навеске порошка гидроксида алюминия при непрерывном перемешивании в смесителе последовательно добавляют расчетное количество порошка аморфного алюмосиликата. Аморфный алюмосиликат может быть подвергнут термической обработке, например прокаливанием при температуре 300−850°С, более предпочтительно при температуре 500−750°С. Далее к смеси порошков добавляют водный раствор азотной кислоты и продолжают перемешивание.

Полученный влажный носитель сушат при температуре 100−150°С и прокаливают при температуре 500−600°С. В результате получают однородный носитель белого цвета в виде гранул. Далее готовят пропиточный раствор с заданными концентрациями биметаллических комплексных соединений. К полученному раствору при перемешивании и нагревании добавляют требуемое количество никеля, а перемешивание продолжают до образования раствора темно-зеленого цвета, не содержащего взвешенных частиц. В полученном растворе производят растворение требуемого количества паравольфрамата аммония водного и требуемого количества парамолибдата аммония водного.

Полученным раствором пропитывают носитель, содержащий аморфный алюмосиликат при температуре 15−90°С в течение 5−60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100−250°С, что позволяет достичь особых характеристик.

Полученный катализатор проявляет высокую активность при гидрокрекинге углеводородного сырья и высокую селективность по отношению к керосиновой и дизельным фракциям, что позволяет получать более чистое и более качественное топливо без дополнительных примесей в виде серы даже при использовании «тяжелой», богатой посторонними фракциями, нефти.

Новости // Оборудование, услуги, материалы

Роснефть получила патент на катализатор для изготовления сверхпрочных полимеров

Москва, 4 мая — ИА Neftegaz.RU. Объединенный центр исследований и разработок Роснефти ( РН-ЦИР ) получил патент на катализатор для изготовления инновационного сверхпрочного материала.

Об этом Роснефть сообщила 20 апреля 2018 г.

Подробностей о новинке Роснефть сообщила мало.

Катализатор и сверхпрочные полимеры, получаемые с его помощью, сулят компании большие преимущества.

Так, испытания показали, что такие полимеры вполне способны остановить пулю.

Практическое применение новых полимеров Роснефть видит гораздо более мирным.

По своим характеристикам инновационный материал может использоваться для изготовления вертолетных лопастей и баллистически стойких материалов.

В нефтяной сфере он может применяться для изготовления обсадных и буровых труб с улучшенными товарными характеристиками по весу и стойкости к коррозии.

Кроме того, на его основе могут быть получены прочные композиты, обладающие положительной плавучестью.

В перспективе это позволяет использовать данный материал при изготовлении морских и речных судов.

На данный момент Роснефть является единственными владельцами технологии модификации катализатора для производства сверхпрочных полимеров.

катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(С6Н6 О7)]2[Мо4О116Н5О7)2] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, Al2O 3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O 3 — остальное; имеющий объем пор 0,3-0,6 мл/г, удельную поверхность 150-220 м 2 /г и средний диаметр пор 8-15 нм, сформованный в частицы в виде трилистника с диаметром 1,0-1,5 мм, имеющие объемную механическую прочность по методу Shell SMS 1471 не менее 1,5 МПа. Способ приготовления катализатора включает получение носителя, содержащего, мас.%: TiO2 — 1,5-7,5; Al2O3 — остальное; имеющего удельную поверхность 170-240 м 2 /г, объем пор 0,5-0,95 см 3 /г и средний диаметр пор 8-15 нм, формовкой пасты, полученной смешением порошков AlOOH и TiO2 с водой, азотной кислотой или аммиаком с последующей сушкой и прокалкой; нанесение на полученный носитель соединения [Со(С6Н6О7 )]2[Мо4О116Н5О 7)2] методом пропитки по влагоемкости или из избытка раствора, и сушку. Процесс получения малосернистого дизельного топлива проводят в присутствии описанного выше катализатора. Технический результат — получение катализатора с повышенной механической прочностью, имеющего максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья. 3 н. и 4 з.п. ф-лы, 5 пр.

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения дизельного топлива с низким содержанием серы.

В ближайшие годы на Российских нефтеперерабатывающих заводах (НПЗ) в основном будут производится дизельные топлива, по остаточному содержанию серы соответствующие новым российским и европейским стандартам [ГОСТ Р 52368-2005 (EH 590-2004). Топливо дизельное ЕВРО. Технические условия]. Поскольку существующие марки российских катализаторов не позволяют резко снизить содержание серы в получаемых дизельных топливах без ужесточения условий проведения процесса гидроочистки, актуальной задачей является создание новых высокоактивных катализаторов, позволяющих получать дизельные топлива с низким остаточным содержанием серы при условиях проведения процессов, осуществимых на российских НПЗ без их коренной реконструкции.

Повышение активности катализаторов достигается сочетанием двух факторов — селективного синтеза активного компонента и уменьшения площади поперечного сечения гранулы катализатора, способствующего улучшению диффузии сырья по грануле и, тем самым, обеспечивающего максимально полное использование активного компонента. Однако уменьшение диаметра сечения гранулы приводит к снижению механической прочности, которую нельзя уменьшать ниже пределов, определяемых современными требованиями НПЗ, в соответствии с которыми объемная механическая прочность, определяемая по методу Shell SMS 1471, не должна быть ниже 1,5 МПа.

Известны различные нанесенные катализаторы гидроочистки дизельных топлив, способы их приготовления и способы получения малосернистых дизельных топлив, однако основным недостатком катализаторов и способов их приготовления является относительно низкая каталитическая активность и недостаточная механическая прочность гранул, а основным недостатком известных способов получения дизельных топлив является высокое остаточное содержание серы в получаемых продуктах.

Чаще всего для проведения гидрообессеривания нефтяного сырья используют катализаторы, содержащие оксиды кобальта или никеля и молибдена, нанесенные на оксид алюминия. Так, известен катализатор гидрообессеривания [Заявка РФ № 2002124681, C10G 45/08, B01J 23/887, 16.09.2002], содержащий в своем составе оксид кобальта, оксид молибдена и оксид алюминия, отличающийся тем, что имеет соотношение компонентов, мас.%: оксид кобальта 3,0-9,0, оксид молибдена 10,0-24,0 мас.%, оксид алюминия остальное, удельную поверхность 160-250 м 2 /г, механическую прочность на раздавливание 0,6-0,8 кг/мм 2 . При этом процесс гидроочистки ведут при температуре 310-340°С, давлении 3,0-5,0 МПа, при соотношении водород/сырье 300-500 нм 3 /м 3 и объемной скорости подачи сырья 1,0-4,0 ч -1 . Основными недостатками такого катализатора и способа проведения процесса гидроочистки является высокое содержание серы в получаемых продуктах, а также недостаточная механическая прочность катализатора.

Механическая прочность катализатора во многом определяется свойствами исходного носителя, поэтому способы приготовления катализаторов в качестве отдельной предварительной стадии могут включать приготовление носителя. Так, известен катализатор гидроочистки нефтяных фракций и способ его получения [Патент РФ № 2197323, B01J 23/88, B01J 21/12, B01J 23/882, 23.05.2001], согласно которому катализатор включает оксиды кобальта и/или никеля, триоксид молибдена, носитель на основе оксида алюминия, кремния. Носитель дополнительно содержит по крайней мере одно модифицирующее соединение металлов, выбранных из группы:

натрий, железо, лантан, церий, цинк, медь, вольфрам, и/или по крайней мере одно соединение неметаллов, выбранных из группы: фосфор, фтор, бор, и катализатор, имеет следующий состав, мас.%: NiO и/или СоО 1-5, МоО3 8-15, носитель, в составе которого: SiO2 0,01-50, модифицирующее соединение металлов 0,01-5 и/или соединение неметаллов 0,5-10, оксид алюминия — остальное. Способ получения катализатора включает формование экструзией гидроксида алюминия, содержащего модифицирующие соединения, сушку, прокалку, пропитку раствором соединений активных компонентов никеля и/или кобальта, молибдена, с последующей сушкой и прокалкой, в качестве гидроксида алюминия используют продукт регидратации рентгеноаморфного слоистого соединения алюминия формулы Al 2O3×nH2O, где: n=0,3-1,5, который содержит частично или в полном объеме модифицирующие соединения металлов, выбранных из группы: натрий, железо, лантан, церий, цинк, медь, вольфрам, в количестве 0,01-5 мас.%, и/или по крайней мере одно соединение неметаллов, выбранных из группы: фосфор, фтор, бор, в количестве 0,5-10 мас.%.

Часто предварительное приготовление носителя является основным отличительным признаком способа приготовления катализатора. Так, известен способ получения катализатора для гидрооблагораживания нефтяных фракций [Патент РФ № 2266786, B01J 23/882, C10G 45/08, 20.10.2004], согласно которому, повышение механической прочности достигается за счет введения в состав алюмооксидного носителя текстурирующих добавок из числа глинозема или/и продукта термохимической активации гиббсита в количестве 5-30 мас.%. При этом глинозем используют с размером частиц не более 15 мкм, а продукт термохимической активации гиббсита с размером частиц не более 45 мкм. В качестве связующего используют азотную кислоту в мольном соотношении (0,01-0,03):1 Al2 O3 или/и продукт взаимодействия азотнокислого и металлического алюминия в количестве 1-5% в пересчете на Al2O 3. Перед пропиткой носитель обрабатывают водяным паром при повышенной температуре и пропитку ведут из водного раствора никель/кобальтмолибденсодержащего комплекса при рН=1-3. В данном случае для повышения активности катализатора используется метод нанесения кобальта и молибдена из кобальтмолибденсодержащего комплекса.

Близкий по сути подход описан в способе получения катализатора гидроочистки нефтяных фракций [РФ № 2074025, B01J 21/04, 27.02.1997], содержащего, мас.%: 14-21 МоО3; 3-8 NiO или СоО; 0,5-6 P2O5 ; Al2O3 — остальное, путем нанесения соединений активных компонентов на окись алюминия соосаждением солей металлов VIII и VI групп Периодической системы, а также фосфора с последующей формовкой каталитической массы в виде экструдатов, сушкой и прокладкой полученных гранул, характеризующийся тем, что с целью получения катализатора с повышенной активностью в реакциях гидрообессеривания нефтяных фракций, при синтезе катализатора активные компоненты вводятся в гидроокись алюминия в виде комплексного раствора солей металлов VIII и VI групп, стабилизированного фосфорной кислотой при условии, что рН раствора фосфорной кислоты составляет 0,5-2,5 при температуре 40-60°С.

Общими недостатками для вышеперечисленных катализаторов и способов их приготовления является то, что получаемые катализаторы имеют невысокую активность и низкую механическую прочность, соответственно, с их использованием не удается достичь низкого остаточного содержания серы в получаемых дизельных топливах.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому катализатору, способу его приготовления и способу получения малосернистого дизельного топлива является катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки [Пат. РФ 2402380, B01J 23/882, B01J 23/883, B01J 21/02, B01J 37/02, C10G 45/08, B01J 38/62, 13.08.2009]. Известный катализатор имеет объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м 2 /г и средний диаметр пор 9-13 нм, содержит соединение бора в количестве 1,06-3,95 мас.%, биметаллическое комплексное соединение

[М(H2O)х(L)у ]2[Mo4O11(C6H 5O7)2], где М=Со 2+ и/или Ni 2+ ; L — частично депротонированная форма лимонной кислоты С6Н6О7; х=0 или 2; у=0 или 1; — 30-45 мас.%, и Al2O3 — 51,05-68,94 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.%: МоО3 — 14,0-23,0; СоО и/или NiO — 3,6-6,0; B2O3 — 0,6-2,6; Al2 O3 — остальное. Способ приготовления катализатора заключается в пропитке оксида алюминия предварительно синтезируемым раствором биметаллического комплексного соединения [М(H2 O)х(L)у]2[Mo4O 11(C6H5O7)2 ] и соединения бора, при этом концентрация биметаллического соединения в растворе такова, чтобы обеспечить в готовом катализаторе 40-45 мас.% биметаллического комплексного соединения. Процесс гидроочистки углеводородного сырья проводят при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч -1 , объемном отношении водород/сырье 100-1000 м 3 /м 3 в присутствии описанного выше катализатора.

Смотрите так же:  Требования к персоналу службы приема и размещения гостиницы

Основным недостатком прототипа, также как и других известных катализаторов, приготовленных известными способами, является низкая активность катализатора в гидроочистке и низкая механическая прочность. Основным недостатком процесса гидроочистки является высокое содержание серы в гидроочищенных продуктах.

Предлагаемое изобретение решает задачу создания улучшенного катализатора гидроочистки дизельного топлива, способа приготовления катализатора и способа получения малосернистого дизельного топлива, характеризующихся:

1. Оптимальным химическим составом катализатора, оптимальными текстурными характеристиками, размером и формой гранул, обеспечивающих хороший доступ серосодержащих компонентов дизельного топлива к активному компоненту и обуславливающих высокую каталитическую активность.

2. Использованием предварительно синтезированного носителя, представляющего собой оксид алюминия, модифицированный добавками диоксида титана, обеспечивающими увеличение механической прочности гранул и повышение каталитической активности.

3. Способом приготовления, заключающимся в одностадийном введении активных металлов в состав катализатора, обеспечивающим получение катализатора с высокой механической прочностью и оптимальным строением биметаллического активного компонента, равномерно распределенного по грануле катализатора.

4. Отсутствием стадии высокотемпературной прокалки катализатора, приводящей к неоправданным затратам тепла и выбросам в атмосферу токсичных соединений.

5. Низким содержанием серы в получаемых дизельных топливах, достигаемым за счет использования заявляемого катализатора.

Катализатор содержит биметаллическое комплексное соединение

[Со(C6H6O 7)]2[Mo4O11(C6 H5O7)2] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, Al2O3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 не менее 1,5 МПа, и при этом имеет объем пор 0,3-0,6 мл/г, удельную поверхность 150-220 м 2 /г и средний диаметр пор 8-15 нм.

Предлагаемый способ приготовления катализатора включает предварительное приготовление носителя, заключающееся в приготовлении пасты из порошка гидроксида алюминия AlOOH, со структурой бемита или псевдобемита с водой, азотной кислотой или водным раствором аммиака, и порошком диоксида титана, формовке полученной пасты через фильеру в форме трилистника при давлении до 10 МПа, сушке и прокалке при температуре до 600°С. При этом получен носитель, содержащий, мас.%: Ti — 1,5-7,5; Al 2O3 — остальное, имеющий удельную поверхность 170-240 м 2 /г, объем пор 0,5-0,95 см 3 /г и средний диаметр пор 8-15 нм, представляющий собой частицы с сечением в виде трилистника с диаметром описанной окружности не более 1,5 мм и длиной до 20 мм, имеющие механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,5 МПа.

В качестве порошка гидроксида алюминия AlOOH может быть использован бемит или псевдобемит, полученный по любой из известных промышленных технологий получения моногидроксида алюминия. В качестве порошка диоксида титана может быть использован TiO2 со структурой рутила или анатаза, получаемый по любой известной промышленной технологии.

При приготовлении пасты компоненты берут в следующих весовых отношениях -гидроксид алюминия:вода:азотная кислота или водный раствор аммиака:диоксид титана = 1:0,6-0,8:0,01-0,03:0,01-0,05.

Далее в водном растворе синтезируют биметаллическое комплексное соединение [Со(C6H6O7 )]2[Mo4O11(C6H 5O7)2]. Синтез заключается в последовательном растворении в воде при нагревании и перемешивании моногидрата лимонной кислоты C6H8O7×H 2O, парамолибдата аммония (NH4)6Mo 7O24×4H2O и кобальта углекислого основного 2СоСО3×3Со(ОН)2×H 2O в соотношениях, соответствующих соотношению компонентов в комплексном соединении.

Далее титансодержащий носитель пропитывают полученным раствором биметаллического соединения по влагоемкости или из избытка раствора. В случае пропитки из избытка раствора пропитку проводят при температуре 20-90°С в течение 5-60 минут, избыток раствора сливают, катализатор сушат на воздухе при температуре 100-250°С. Для пропитки используют растворы биметаллического соединения такой концентрации, чтобы после нанесения и сушки катализатор содержал компоненты со следующими концентрациями, мас.%: биметаллическое комплексное соединение [Со(C6H6O7)]2[Mo 4O11(C6H5O7 )2] — 30-45 мас.%, диоксид титана — 0,8-6,0 мас.%, Al2O3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО 3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O3 — остальное;

Далее проводят гидроочистку дизельного топлива, для чего навеску катализатора помещают в каталитический реактор, сульфидируют по одной из известных методик, и подают дизельное топливо при следующих условиях: температура 320-400°С, давление 0,5-10 МПа, весовой расход сырья 0,5-5 ч -1 , объемное отношение водород/сырье 100-1000 м 3 /м 3 .

Основным отличительным признаком предлагаемого катализатора по сравнению с прототипом является то, что катализатор содержит, мас.%: биметаллическое комплексное соединение [Со(C6H6O7 )]2[Mo4O11(C6H 5O7)2] — 30-45 мас.%, диоксид титана — 0,8-6,0 мас.%, Al2O3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O3 — остальное. Выход содержания компонентов катализатора за заявляемые границы приводит к снижению активности катализатора, при этом выход содержания диоксида титана за заявляемые границы приводит к снижению механической прочности катализатора.

Основным отличительным признаком способа приготовления катализатора по сравнению с прототипом является то, что для приготовления катализатора используют носитель, содержащий, мас.%: Ti — 1,5-7,5; Al2O3 — остальное, имеющий удельную поверхность 170-240 м 2 /г, объем пор 0,5-0,95 см 3 /г и средний диаметр пор 8-15 нм, представляющий собой частицы с сечением в виде трилистника с диаметром описанной окружности не более 1,5 мм и длиной до 20 мм, имеющие механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,5 МПа.

Вторым отличительным признаком способа приготовления катализатора является то, что титансодержащий алюмооксидный носитель готовят путем приготовления пасты из порошка гидроксида алюминия AlOOH, со структурой бемита или псевдобемита с водой, азотной кислотой или водным раствором аммиака, и порошком диоксида титана, формовки полученной пасты через фильеру в форме трилистника при давлении до 10 МПа, сушки и прокалки при температуре до 600°С.

Третьим отличительным признаком способа приготовления катализатора является то, что титансодержащий носитель пропитывают по влагоемкости или из избытка раствором биметаллического комплексного соединения состава: [Со(C6H6O7)]2 [Mo4O11(C6H5O 7)2], при этом концентрации раствора и количество носителя таковы, чтобы обеспечить в готовом катализаторе после сушки следующее содержание компонентов, мас.%: биметаллическое комплексное соединение [Со(C6H6O7 )]2[Mo4O11(C6H 5O7)2] — 30-45 мас.%, диоксид титана — 0,8-6,0 мас.%, Al2O3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O3 — остальное.

Процесс гидроочистки проводят при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч -1 , объемном отношении водород/сырье 100-1000 м 3 /м 3 в присутствии катализатора, имеющего следующий состав компонентов, мас.%: биметаллическое комплексное соединение [Со(C 6H6O7)]2[Mo4 O11(C6H5O7)2 ] — 30-45 мас.%, диоксид титана — 0,8-6,0 мас.%, Al2 O3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al 2O3 — остальное.

Технический результат складывается из следующих составляющих:

1. Заявляемый химический состав катализатора обуславливает максимальную активность в целевых реакциях, протекающих при гидроочистке дизельного топлива. Наличие титана в заявляемых интервалах в составе катализатора, с одной стороны, обеспечивает достижение необходимой механической прочности, а с другой стороны, способствует образованию активного компонента оптимальной для катализа морфологии, что и обеспечивает повышенный уровень активности катализатора.

2. Использование биметаллических комплексных соединений, имеющих высокую растворимость в воде, позволяет получать катализаторы с требуемым массовым содержанием элементов, при этом практически все нанесенные металлы входят в состав биметаллических активных центров реакций гидроочистки.

3. Использование носителя, обладающего высокой прочностью и при этом, имеющего заявляемые гранулометрические и текстурные характеристики, оптимальные для катализаторов гидроочистки, обеспечивает доступ практически всех сераорганических соединений подвергаемого гидроочистке углеводородного сырья к активному компоненту, локализованному в порах носителя, и тем самым, обеспечивает получение продуктов с минимальным остаточным содержанием серы.

4. Предлагаемый способ получения катализатора характеризуется полным отсутствием сточных вод, требующих очистки и утилизации.

5. Нанесение всех компонентов катализатора на титансодержащий носитель методом однократной пропитки существенно упрощает технологию приготовления катализатора.

6. Сушка катализатора в интервале температур 100-25°С, помимо получения высокоактивного катализатора, имеющего заявляемый химический состав, приводит к существенной экономии топлива или теплоносителей.

7. Проведение процесса гидроочистки дизельного топлива в присутствии заявляемого катализатора, приготовленного заявляемым способом, позволяет при равных условиях процесса получить дизельное топливо со значительно меньшим остаточным содержанием серы, чем при использовании катализатора прототипа.

Описание предлагаемого технического решения.

Сначала готовят титансодержащий носитель. К навеске порошка гидроксида алюминия AlOOH, имеющего структуру бемита или псевдобемита, при непрерывном перемешивании в смесителе с Z-образными лопастями последовательно добавляют расчетные количества порошков диоксида титана со структурой анатаза или рутила, водных растворов азотной кислоты или аммиака. Компоненты берут в следующих весовых отношениях — гидроксид алюминия:вода:азотная кислота или водный раствор аммиака:диоксид титана = 1:0,6-0,8:0,01-0,03:0,01-0,05. Перемешивание продолжают в течение 20-480 мин при температуре 20-95°С. В результате образуется однородная пластичная паста. Полученную пасту продавливают через фильеру с отверстиями, форма и размеры которых обеспечивают получение гранул с поперечным сечением в форме трилистника с диаметром описанной окружности 1,0-1,5 мм. Экструдирование ведут при давлении 0,5-10,0 МПа. Полученный влажный носитель сушат при температуре 100-150°С и прокаливают при температуре 500-600°С.

В результате, получают однородный носитель белого цвета, представляющий собой гранулы с поперечным сечением в виде трилистника с диаметром описанной окружности 1,0-1,5 мм и длиной 2-20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 не менее 1,5 МПа. Носитель содержит, мас.%: TiO2 — 1,5-7,5; Al2O3 — остальное и имеет удельную поверхность 170-240 м 2 /г, объем пор 0,5-0,95 см 3 /г и средний диаметр пор 8-15 нм. Далее готовят пропиточный раствор с заданной концентрацией биметаллического комплексного соединения [Со(C6H6O7)] 2[Mo4O11(C6H5 O7)2]. Сначала в растворе синтезируют биметаллическое комплексное соединение, далее раствор доводят до требуемой концентрации путем добавления необходимого количества воды.

Синтез биметаллического соединения в растворе осуществляют следующим образом: в воде при перемешивании растворяют требуемое количество моногидрата лимонной кислоты С6Н8О 7×Н2О. К полученному раствору при перемешивании и нагревании добавляют требуемое количество парамолибдата аммония (NH4)6Mo7O24×4H 2O. Перемешивание продолжают до полного растворения компонентов и образования прозрачного раствора. Далее к полученному раствору при продолжающемся перемешивании добавляют требуемое количество кобальта углекислого основного 2СоСО3×3Со(ОН) 2×H2O. Перемешивание продолжают до его полного растворения и образования раствора, не содержащего взвешенных частиц. В результате получают раствор биметаллического комплексного соединения [Со(C6H6O7)] 2[Mo4O11(C6H5 O7)2].

Далее, путем добавления воды, концентрацию биметаллического соединения в растворе доводят до величины, обеспечивающей получение катализатора, содержащего компоненты в заявляемых концентрациях.

Полученным раствором пропитывают титансодержащий носитель, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора. Пропитку из избытка раствора проводят при температуре 20-90°С в течение 5-60 мин при периодическом перемешивании, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора.

После пропитки катализатор сушат на воздухе при температуре 100-250°С.

В результате, получают катализатор, характеристики которого полностью соответствуют заявляемым интервалам.

Далее проводят процесс получения малосернистого дизельного топлива, для чего навеску катализатора помещают в каталитический реактор, сульфидируют по одной из известных методик, и подают дизельное топливо при следующих условиях: температура 320-400°С, давление 0,5-10 МПа, весовой расход сырья 0,5-5 ч -1 , объемное отношение водород/сырье 100-1000 м 3 /м 3 . В качестве исходного сырья используют прямогонное дизельное топливо с содержанием серы 2,2% S и концом кипения 360°С. Остаточное содержание серы в гидроочищенном дизельном топливе определяют с помощью рентгенофлуоресцентного анализатора HORIBA SLFA-2100.

Сущность изобретения иллюстрируется приведенными примерами.

Пример 1. Согласно известному техническому решению.

50 г оксида алюминия, сформованного в виде экструдатов с сечением форме трилистника с диаметром описанной окружности 1,5 мм и имеющего удельную поверхность 330 м 2 /г, объем пор 0,7 см 3 /г и средний диаметр пор 120 Å пропитывают избытком раствора, биметаллического комплексного соединения, который готовят следующим образом: в 40 см 3 дистиллированной воды растворяют при перемешивании 18,0 г моногидрата лимонной кислоты C6H8O7×H 2O. К полученному раствору при продолжающемся перемешивании порциями присыпают 24,5 г парамолибдата аммония (NH4 )6Mo7O24×4H2 O. После его полного растворения к раствору при перемешивании добавляют 18,7 г нитрата кобальта Со(NO3)2 ×6H2O и перемешивание продолжают до его полного растворения. В растворе образуется биметаллическое комплексное соединение [Co(H2O)2]2[Mo 4O11(C6H5O7 )2]. После этого к раствору добавляют 4,0 г борной кислоты Н3ВО3, перемешивание продолжают до отсутствия в растворе видимых взвешенных частиц. Далее объем раствора доводят дистиллированной водой до 73,5 см 2 .

Смотрите так же:  Арбитражный суд республики татарстан реквизиты для уплаты госпошлины

Пропиточный раствор и носитель контактируют в течение 20 мин, далее избыток раствора сливают, катализатор переносят в чашку Петри и далее помещают в сушильный шкаф, в котором выдерживают 4 ч при 120°С.

Полученный катализатор имеет следующий состав, мас.%: биметаллическое комплексное соединение [Со(H2O)2]2[Mo 4O11(C6H5O7 )2] — 35 мас.%, Н3ВО3 — 3,95 мас.%, Al2O3 — 61,05 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО 3 — 16,0; СоО — 4,2; B2O3 — 2,0; Al2O3 — остальное.

Объемная механическая прочность полученного катализатора, измеренная по методу Shell SMS 1471, составляет 1,2 МПа.

Далее проводят процесс получения малосернистого дизельного топлива, для чего 5 г полученного катализатора помещают в проточный реактор из нержавеющей стали и выдерживают в потоке дизельного топлива, подаваемого с весовым расходом 3 часа -1 , дополнительно содержащего 1 мас.% диметилдисулифида, при давлении 3,5 МПа и объемном отношении водород/дизельное топливо 200 нм 3 /м 3 при температуре 230°С 4 часа и затем при температуре 340°С 2 часа. Далее подачу дизельного топлива, содержащего добавки диметилдисульфида, прекращают, начинают подачу прямогонного дизельного топлива с содержанием серы 2,2% S и концом кипения 360°С с объемным расходом 2,0 ч -1 , при объемном отношении водород/дизельное топливо 300 нм 3 /м 3 , температуре 340°С, давление 3,5 МПа. Через 6 часов, необходимых для промывки технологических линий и выхода катализатора на стационарный уровень активности, начинают отбор проб гидроочищенного дизельного топлива с периодичностью 1 раз в час. Данные 6 анализов усредняют. В результате получено гидроочищенное дизельное топливо, содержащее 350 ppm остаточной серы.

Примеры 2-5 иллюстрируют предлагаемое техническое решение.

К 100 г порошка гидроксида алюминия AlOOH, имеющего структуру бемита, при непрерывном перемешивании в смесителе с Z-образными лопастями добавляют 1 г порошка рутила, 1 мл концентрированной азотной кислоты и 60 мл воды. Весовые отношения компонентов смеси — гидроксид алюминия:вода:азотная кислота:диоксид титана = 1:0,6:0,01:0,01. Перемешивание продолжают в течение 20 мин при температуре 95°С. В результате образуется однородная пластичная паста. Полученную пасту продавливают через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,1 мм. Экструдирование ведут при давлении 10,0 МПа. Полученный влажный носитель сушат при температуре 100°С и прокаливают при температуре 500°С.

В результате, получают однородный носитель белого цвета, представляющий собой гранулы с поперечным сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной 2-20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,6 МПа. Носитель содержит, мас.%: TiO2 — 1,5; Al 2O3 — остальное и имеет удельную поверхность 170 м 2 /г, объем пор 0,5 см 3 /г и средний диаметр пор 8 нм.

Далее в растворе синтезируют биметаллическое соединение [Со(C6H6O 7)]2[Mo4O11(C6 H5O7)2], для чего в 70 мл дистиллированной воды при перемешивании и нагревании до 90°С последовательно растворяют 65,0 г моногидрата лимонной кислоты C6H 8O7×H2O; 71,0 г парамолибдата аммония (NH4)6Mo7O24 ×4H2O и 22,0 г основного карбоната кобальта 2СоСО 3×3Со(ОН)2×H2O. Далее, добавлением дистиллированной воды объем раствора доводят до 156,5 мл. Концентрация [Со(C6H6O7)] 2[Mo4O11(C6H5 O7)2] в растворе составляет 857 г/л.

20 г носителя пропитывают по влагоемкости 10 мл водного раствора, содержащего 8,57 г [Со(C6H6O 7)]2[Mo4O11(C6 H5O7)2]. Катализатор сушат на воздухе при 100°С.

Полученный катализатор имеет объем пор 0,3 мл/г, удельную поверхность 150 м 2 /г, средний диаметр пор 8 нм и содержит: биметаллическое комплексное соединение [Со(C6H6O7)] 2[Mo4O11(C6H5 O7)2] в количестве 30 мас.%, диоксид титана 0,8 мас.%, Al2O3 — 69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО 3 — 14,0; СоО — 3,6; TiO2 — 1,1; Al2 O3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,6 МПа.

Процесс гидроочистки дизельного топлива проводят аналогично примеру 1, в результате получено дизельное топливо, содержащее 300 ppm остаточной серы.

Носитель готовят аналогично примеру 2, с той разницей, что используют порошок гидроксида алюминия со структурой псевдобемита, порошок диоксида титана со структурой анатаза, а весовые отношения компонентов смеси — гидроксид алюминия:вода:азотная кислота:диоксид титана = 1:0,8:0,03:0,05. Перемешивание продолжают 480 мин при температуре 20°С. Полученную пасту продавливают через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,6 мм. Экструдирование ведут при давлении 5,0 МПа. Полученный влажный носитель сушат при температуре 150°С и прокаливают при температуре 600°С.

Получен носитель, представляющий собой гранулы с поперечным сечением в виде трилистника с диаметром описанной окружности 1,5 мм и длиной 2-20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,65 МПа. Носитель содержит, мас.%: TiO2 — 7,5; Al2O3 — остальное и имеет удельную поверхность 240 м 2 /г, объем пор 0,95 см 3 /г и средний диаметр пор 15 нм.

Носитель пропитывают по влагоемкости раствором биметаллического комплексного соединения из примера 2 с той разницей, что концентрация [Со(C6H6O7)]2[Mo 4O11(C6H5O7 )2] в пропиточном растворе 861 г/л. Катализатор сушат на воздухе при 250°С.

Полученный катализатор имеет объем пор 0,55 мл/г, удельную поверхность 210 м 2 /г, средний диаметр пор 15 нм и содержит: биметаллическое комплексное соединение [Со(C6H6O7)] 2[Mo4O11(C6H5 O7)2] в количестве 45 мас.%, диоксид титана 5,0 мас.%, Al2O3 — 51,0 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО 3 — 23,0; СоО — 6,0; TiO2 — 5,3; Al2 O3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,7 МПа.

Процесс гидроочистки дизельного топлива проводят аналогично примеру 1, в результате получено дизельное топливо, содержащее 270 ppm остаточной серы.

20 г носителя из примера 3 контактируют 5 мин при 90°С с 40 мл раствора биметаллического комплексного соединения, приготовленного аналогично примеру 2, с той разницей, что концентрация [Со(C6H6 O7)]2[Mo4O11(C 6H5O7)2] в растворе составляет 800 г/л. Избыток раствора сливают, катализатор сушат при 150°С.

Полученный катализатор имеет объем пор 0,6 мл/г, удельную поверхность 220 м 2 /г, средний диаметр пор 15 нм и содержит: биметаллическое комплексное соединение [Со(C 6H6O7)]2[Mo4 O11(C6H5O7)2 ] в количестве 40 мас.%, диоксид титана 6,0 мас.%, Al2 O3 — 54,0 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 20,5; СоО — 5,3; TiO2 — 6,2; Al2O3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,7 МПа.

Процесс гидроочистки дизельного топлива проводят аналогично примеру 1, в результате получено дизельное топливо, содержащее 250 ppm остаточной серы.

Носитель готовят аналогично примеру 3, с той разницей, что весовые отношения компонентов смеси — гидроксид алюминия:вода:азотная кислота:диоксид титана = 1:0,7:0,02:0,03. Перемешивание продолжают 40 мин при температуре 40°С. Полученную пасту продавливают через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,4 мм. Экструдирование ведут при давлении 6,0 МПа. Полученный влажный носитель сушат при температуре 100°С и прокаливают при температуре 550°С.

Получен носитель, представляющий собой гранулы с поперечным сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной 2-20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,7 МПа. Носитель содержит, мас.%: TiO 2 — 4,3; Al2O3 — остальное и имеет удельную поверхность 200 м 2 /г, объем пор 0,75 см 3 /г и средний диаметр пор 10 нм.

20 г носителя контактируют 60 мин при 20°С с 40 мл раствора биметаллического комплексного соединения, приготовленного аналогично примеру 2. Избыток раствора сливают, катализатор сушат при 200°С.

Полученный катализатор имеет объем пор 0,45 мл/г, удельную поверхность 180 м 2 /г, средний диаметр пор 10 нм и содержит: биметаллическое комплексное соединение [Со(C 6H6O7)]2[Mo4 O11(C6H5O7)2 ] в количестве 38 мас.%, диоксид титана 3,0 мас.%, Al2 O3 — 54,0 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.% МоО3 — 19,5; СоО — 5,0; TiO2 — 3,3; Al2O3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,3 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 1,75 МПа.

Процесс гидроочистки дизельного топлива проводят аналогично примеру 1, в результате получено дизельное топливо, содержащее 230 ppm остаточной серы.

Таким образом, как видно из приведенных примеров, предлагаемый катализатор за счет своего химического состава и заявляемого способа приготовления имеет высокую активность в гидроочистке дизельного топлива и высокую механическую прочность, сильно превосходящие аналогичные характеристики прототипа. С использованием заявляемого катализатора, приготовленного заявляемым способом, получено дизельное топливо со значительно меньшим содержанием серы, чем на катализаторе-прототипе при равных условиях проведения процесса гидроочистки.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Катализатор получения малосернистого дизельного топлива в процессе гидроочистки дизельного топлива, включающий в свой состав кобальт, молибден, диоксид титана и оксид алюминия и имеющий объем пор 0,3-0,6 мл/г, удельную поверхность 150-220 м 2 /г и средний диаметр пор 8-15 нм, отличающийся тем, что он содержит биметаллическое комплексное соединение [Со(С6Н 6О7)]2[Мо4О116Н5О7)2] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, Al2O 3 — 51,0-69,2 мас.%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.%: МоО3 — 14,0- 23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O 3 — остальное; и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471 не менее 1,5 МПа.

2. Способ приготовления катализатора получения малосернистого дизельного топлива в процессе гидроочистки дизельного топлива, включающий в свой состав кобальт, молибден и носитель, имеющий объем пор 0,3-0,6 мл/г, удельную поверхность 150-220 м 2 /г и средний диаметр пор 8-15 нм, пропиткой носителя соединениями кобальта и молибдена, с последующими стадиями сушки и прокалки, отличающийся тем, что носитель, содержащий TiO2 и Al2O3, пропитывают водным раствором биметаллического комплексного соединения [Со(С 6Н6О7)]2[Мо4 О116Н5О7)2 ], при этом концентрация биметаллического соединения в растворе позволяет обеспечить в готовом катализаторе 30-45 мас.% биметаллического комплексного соединения, что соответствует содержанию в прокаленном при 550°С катализаторе, мас.%: МоО3 — 14,0-23,0; СоО — 3,6-6,0; TiO2 — 1,1-6,2; Al2O 3 — остальное.

3. Способ по п.2, отличающийся тем, что носитель готовят путем приготовлении пасты из порошка гидроксида алюминия AlOOH со структурой бемита или псевдобемита с водой, азотной кислотой или водным раствором аммиака, и порошком диоксида титана, формовке полученной пасты через фильеру в форме трилистника при давлении до 10 МПа, сушке и прокалке при температуре до 600°С, при этом получаемый носитель содержит, мас.%: TiO2 — 1,5-7,5; Al2O3 — остальное; имеет удельную поверхность 170-240 м 2 /г, объем пор 0,5-0,95 см 3 /г и средний диаметр пор 8-15 нм, представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности не более 1,5 мм и длиной до 20 мм, имеющие механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,5 МПа.

4. Способ по п.2, отличающийся тем, что для приготовления катализатора используют либо пропитку носителя по влагоемкости, либо из избытка раствора, при этом избыток раствора после пропитки сливают с катализатора и используют для приготовления последующих порций пропиточного раствора при приготовлении следующих партий катализатора.

5. Способ по п.2, отличающийся тем, что после пропитки катализатор сушат на воздухе при температуре 100-250°С.

6. Способ получения малосернистого дизельного топлива в присутствие гетерогенного катализатора, который содержит в своем составе биметаллическое комплексное кобальт-молибденовое соединение и носитель, отличающийся тем, что используют катализатор по п.1 или приготовленный по любому из пп.2-5.

7. Способ получения малосернистого дизельного топлива по п.6, отличающийся тем, что его проводят при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч -1 , объемном отношении водород/сырье 100-1000 м 3 /м 3 .